Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals.
نویسندگان
چکیده
Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ions from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to pre-condition mammalian cells prior to cell biostabilization and storage.
منابع مشابه
Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana
Diapause-destined embryos of the crustacean Artemia franciscana cease development as gastrulae, encyst, and enter a resting stage characterized by greatly reduced metabolic activity and extreme stress resistance. To better understand diapause induction and maintenance in Artemia embryos gene expression was analyzed by subtractive hybridization at two days post-fertilization, a time early in thi...
متن کاملRegulatory features of transcription in isolated mitochondria from Artemia franciscana embryos.
Optimal conditions were developed for an in organello transcriptional run-on assay using mitochondria isolated from Artemia franciscana embryos to investigate potential regulatory features of RNA synthesis under conditions of anoxia-induced quiescence. Transcription is not dependent on oxidative phosphorylation for maximal activity when exogenous ATP is available. Bona fide transcription produc...
متن کاملCaspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana.
Evaluation of apoptotic processes downstream of the mitochondrion reveals caspase-9- and low levels of caspase-3-like activities in partly purified extracts of Artemia franciscana embryos. However, in contrast to experiments with extracts of human hepatoma cells, cytochrome c fails to activate caspase-3 or -9 in extracts from A. franciscana. Furthermore, caspase-9 activity is sensitive to exoge...
متن کاملDepression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos.
Transcriptional activity, as assessed by nuclear run-on assays, was constant during 10 h of normoxic development for embryos of the brine shrimp Artemia franciscana. Exposure of embryos to only 4 h of anoxia resulted in a 79.3+/-1 % decrease in levels of in-vivo-initiated transcripts, and transcription was depressed by 88. 2+/-0.7 % compared with normoxic controls after 24 h of anoxia (means +/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of insect physiology
دوره 57 5 شماره
صفحات -
تاریخ انتشار 2011